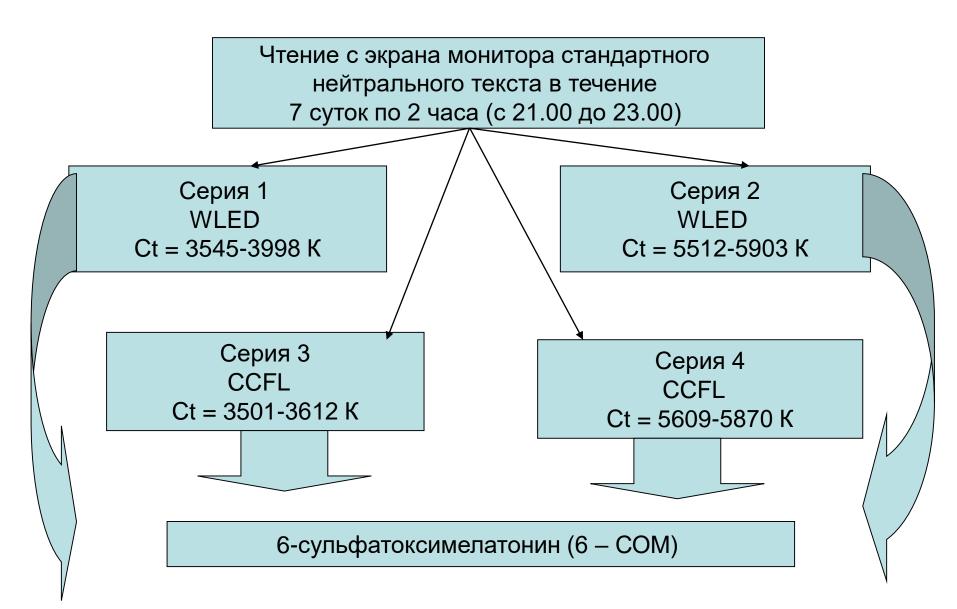
ФГАОУ ВО «Крымский федеральный университет имени В.И. Вернадского», Медицинская академия им. С.И. Георгиевского

Влияние разнотипных источников подсветки экранов мониторов и изменения цветовой температуры на экскрецию метаболита мелатонина

к.мед.н., доцент ЯщенкоС.Г., к.мед.н., доцент Сарчук Е.В., к.б.н., доцент Пилунская О.А.

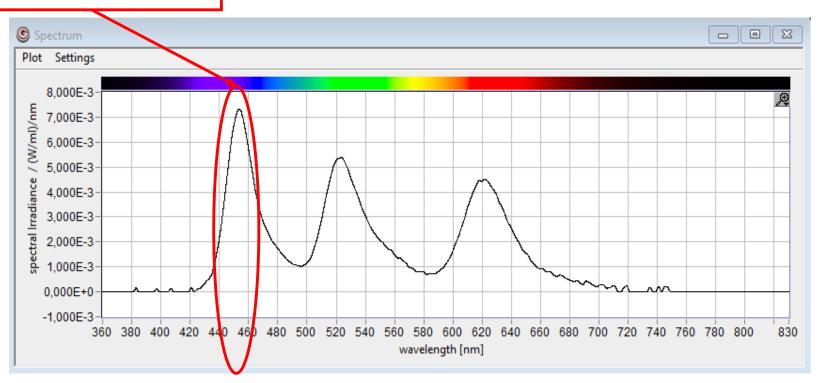
Использование LED (light emitting diode) источников искусственного света:



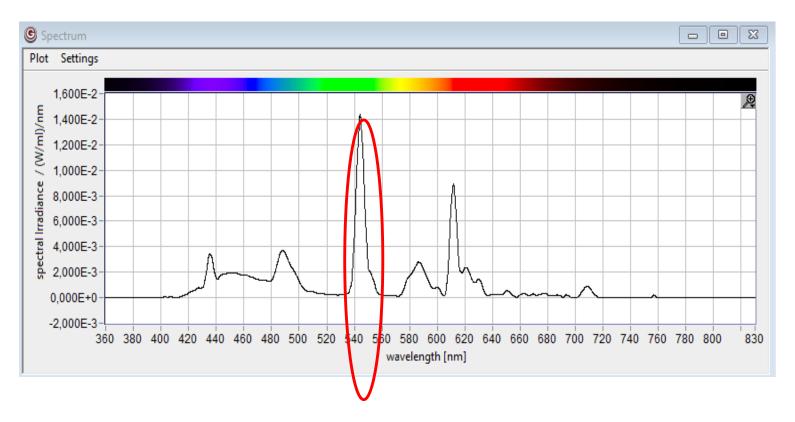
Дизайн исследования

У экранов компьютерных монитроров типов WLED (White Light Emitting Diode) и CCFL (Cold Cathode Fluorescent Lamp), используемых во всех сериях эксперимента проведены измерения спектральных и температурных характеристик экранов с использованием спектрорадиометра BTS-256, с адаптером, имеющим рассеивающее стекло в режиме измерения освещенности.

Дизайн исследования



Цветовая температура, освещенность и спектральное распределение света экранов компьютерных мониторов (Ме; p25/p75)


Параметры	Серия						
	1	2	3	4			
Цветовая температура (K)	3678; 3547/3992	5671; 5522/5898	3595; 3507/3626	5752 5631/5849			
Освещенность (lx)	140,86; 132,51/147,06	146,36; 139,25/152,72	138,56; 131,42/145,33	142,29; 134,43/149,90			
Пиковая длина волны (nm)	620,72; 597,30/632,90	453,60; 449,03/461,11	544,22; 535,47/554,48	519,02; 510,44/523,04			
Центральная длина волны (nm)	623,33; 619,38/630,45	454,89; 448,27/459,39	544,20; 536,84/551,98	521,86; 516,02/526,66			
Доминирующая длина волны (nm)	579,42; 567,01/593,74	452,20; 448,08/457,24	568,08; 560,33/574,21	523,3; 518,55/527,86			

HEVL (High Energy Visible Light), высокоэнергетический свет

Результаты

Спектральное излучение экрана монитора с WLED подсветкой матрицы при цветовой температуре 5899,7К (серия 2).

Спектральное излучение экрана монитора с CCFL подсветкой матрицы при цветовой температуре 5676,7К (серия 4).

Концентрация 6-COM (в ng/ml) в моче (Ме; p25/p75)

Серия	Медиана	p25/p75	P (Mann–Whitney U-test) Серия				
			1	2	3	4	
1	146,09	143,56/148, 71	-	>0,05	<0,01	<0,05	
2	120,23	117,04/123, 90	>0,05	-	<0,01	<0,05	
3	180,18	172,42/184, 08	<0,01	<0,01	-	>0,05	
4	154,94	152,65/160, 31	<0,05	<0,05	>0,05	-	

Проведение корреляционного анализа между изучаемыми параметрами экранов мониторов и концентрацией метаболита мелатонина по сериям выявило наличие достоверных корреляционных связей во 2-й серии со значениями пиковой интенсивности (Ro=0,688; P=0,01) и доминирующей длины волны (Ro=0,532; P=0,05), находящихся в диапазоне HEVL позволяют предположить их супрессирующее влияние на мелатонинобразующую функцию эпифиза.

Увеличение цветовой температуры экранов мониторов с различной подсветкой матриц при недостоверном отличии в значениях освещенности (Р>0,05) дает разную картину спектрального распределения. При этом пиковая интенсивность и доминирующая длина волны в серии с подсветкой WLED и ЦТ 5512-5903 К, оказались в пределах так называемого HEVL - высокоэнергетического света.

Выявленные достоверные корреляционные связи между результатами исследования экскреции метаболита мелатонина и параметрами КМ позволяют предположить их супрессирующее влияние на мелатонинобразующую функцию эпифиза. Полученные результаты согласуются с исследованиями, посвященными использованию дисплеев в ночное время, этот фактор был связан с задержкой наступления сна, сокращением продолжительности сна и подавлением выработки мелатонина. Доказана малая эффективность в регуляции продукции мелатонина функция Night Shift, направленная на изменение спектрального состава самосветящихся дисплеев на портативных электронных устройствах Apple.

Выводы

- 1. Увеличение ЦТ экранов КМ с подсветкой матриц в виде WLED и CCFL при недостоверном отличии в значениях освещенности (P>0,05) дает разную картину спектрального распределения. Увеличение цветовой температуры экранов мониторов с подсветкой WLED приводит к достоверному (P<0,05) снижению экскреции 6–COM.
- 2. Выявлены корреляционные связи между концентрацией метаболита мелатонина со значениями пиковой интенсивности (Ro=0,688, на уровне значимости p=0,01) и доминирующей длины волны (Ro=0,532, на уровне значимости p=0,05), находящиеся в диапазоне HEVL, позволяют предположить их тормозящее влияние на мелатонинобразующую функцию эпифиза.

